Exponent Bounds for a Family of Abelian Difference Sets

نویسندگان

  • K. T. Arasu
  • James A. Davis
  • Jonathan Jedwab
  • Siu Lun Ma
  • Robert L. McFarland
چکیده

Which groups G contain difference sets with the parameters (v, k, A.)= (q 3 + 2q 2 , q2 + q, q), where q is a power of a prime p? Constructions of K. Takeuchi, R.L. McFarland, and J.F. Dillon together yield difference sets with these parameters if G contains an elementary abelian group of order q2 in its center. A result of R.J. Turyn implies that if G is abelian and p is self-conjugate modulo the exponent of G, then a necessary condition for existence is that the exponent of the Sylow p-subgroup of G be at most 2q when p = 2 and at most q if p is an odd prime. In this paper we lower these exponent bounds when q =f. p by showing that a difference set cannot exist for the bounding exponent values of 2q and q. Thus if there exists an abelian (96, 20, 4)-difference set, then the exponent of the Sylow 2-subgroup is at most 4. We also obtain some nonexistence results for a more general family of (v, k, A.)-parameter values.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Exponent of Triple Tensor Product of p-Groups

The non-abelian tensor product of groups which has its origins in algebraic K-theory as well as inhomotopy theory, was introduced by Brown and Loday in 1987. Group theoretical aspects of non-abelian tensor products have been studied extensively. In particular, some studies focused on the relationship between the exponent of a group and exponent of its tensor square. On the other hand, com...

متن کامل

A Construction of Difference Sets in High Exponent 2-Groups Using Representation Theory

Nontrivial difference sets in groups of order a power of 2 are part of the family of difference sets called Menon difference sets (or Hadamard), and they have parameters (22d+2, 22d+1±2d, 22d±2d). In the abelian case, the group has a difference set if and only if the exponent of the group is less than or equal to 2d+2. In [14], the authors construct a difference set in a nonabelian group of ord...

متن کامل

Partial Difference Sets with Paley Parameters

Partial difference sets with parameters (v,k,k,/x) = (v,(v— l)/2,(v — 5)/4,(v— l)/4) are called Paley partial difference sets. By using finite local rings, we construct a family of Paley PDSs for abelian/7-groups with any given exponent. Furthermore, we prove some non-existence results on Paley PDSs. Using these results, we prove that Paley PDSs exist in a rank 2 abelian group if and only if th...

متن کامل

Hadamard Difference Sets in Nonabelian 2-Groups with High Exponent

Nontrivial difference sets in groups of order a power of 2 are part of the family of difference sets called Hadamard difference sets. In the abelian case, a group of order 22 tq2 has a difference set if and only if the exponent of the group is less tq2 Ž than or equal to 2 . In a previous work R. A. Liebler and K. W. Smith, in ‘‘Coding Theory, Design Theory, Group Theory: Proc. of the Marshall ...

متن کامل

A Unifying Construction for Difference Sets

We present a recursive construction for difference sets which unifies the Hadamard, McFarland, and Spence parameter families and deals with all abelian groups known to contain such difference sets. The construction yields a new family of difference sets with parameters (v, k, *, n)=(2(2&1) 3, 2(2+1) 3, 2(2+1) 3, 2) for d 0. The construction establishes that a McFarland difference set exists in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017