Exponent Bounds for a Family of Abelian Difference Sets
نویسندگان
چکیده
Which groups G contain difference sets with the parameters (v, k, A.)= (q 3 + 2q 2 , q2 + q, q), where q is a power of a prime p? Constructions of K. Takeuchi, R.L. McFarland, and J.F. Dillon together yield difference sets with these parameters if G contains an elementary abelian group of order q2 in its center. A result of R.J. Turyn implies that if G is abelian and p is self-conjugate modulo the exponent of G, then a necessary condition for existence is that the exponent of the Sylow p-subgroup of G be at most 2q when p = 2 and at most q if p is an odd prime. In this paper we lower these exponent bounds when q =f. p by showing that a difference set cannot exist for the bounding exponent values of 2q and q. Thus if there exists an abelian (96, 20, 4)-difference set, then the exponent of the Sylow 2-subgroup is at most 4. We also obtain some nonexistence results for a more general family of (v, k, A.)-parameter values.
منابع مشابه
On the Exponent of Triple Tensor Product of p-Groups
The non-abelian tensor product of groups which has its origins in algebraic K-theory as well as inhomotopy theory, was introduced by Brown and Loday in 1987. Group theoretical aspects of non-abelian tensor products have been studied extensively. In particular, some studies focused on the relationship between the exponent of a group and exponent of its tensor square. On the other hand, com...
متن کاملA Construction of Difference Sets in High Exponent 2-Groups Using Representation Theory
Nontrivial difference sets in groups of order a power of 2 are part of the family of difference sets called Menon difference sets (or Hadamard), and they have parameters (22d+2, 22d+1±2d, 22d±2d). In the abelian case, the group has a difference set if and only if the exponent of the group is less than or equal to 2d+2. In [14], the authors construct a difference set in a nonabelian group of ord...
متن کاملPartial Difference Sets with Paley Parameters
Partial difference sets with parameters (v,k,k,/x) = (v,(v— l)/2,(v — 5)/4,(v— l)/4) are called Paley partial difference sets. By using finite local rings, we construct a family of Paley PDSs for abelian/7-groups with any given exponent. Furthermore, we prove some non-existence results on Paley PDSs. Using these results, we prove that Paley PDSs exist in a rank 2 abelian group if and only if th...
متن کاملHadamard Difference Sets in Nonabelian 2-Groups with High Exponent
Nontrivial difference sets in groups of order a power of 2 are part of the family of difference sets called Hadamard difference sets. In the abelian case, a group of order 22 tq2 has a difference set if and only if the exponent of the group is less tq2 Ž than or equal to 2 . In a previous work R. A. Liebler and K. W. Smith, in ‘‘Coding Theory, Design Theory, Group Theory: Proc. of the Marshall ...
متن کاملA Unifying Construction for Difference Sets
We present a recursive construction for difference sets which unifies the Hadamard, McFarland, and Spence parameter families and deals with all abelian groups known to contain such difference sets. The construction yields a new family of difference sets with parameters (v, k, *, n)=(2(2&1) 3, 2(2+1) 3, 2(2+1) 3, 2) for d 0. The construction establishes that a McFarland difference set exists in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017